Cyclic arginine-glycine-aspartate peptides enhance three-dimensional stem cell osteogenic differentiation.
نویسندگان
چکیده
The role of morphogens in bone regeneration has been widely studied, whereas the effect of matrix cues, particularly on stem cell differentiation, are less well understood. In this work, we investigated the effects of arginine-glycine-aspartate (RGD) ligand conformation (linear vs cyclic RGD) on primary human bone marrow stromal cell (hBMSC) and D1 stem cell osteogenic differentiation in three-dimensional (3D) culture and compared their response with that of committed MC3T3-E1 preosteoblasts to determine whether the stage of cell differentiation altered the response to the adhesion ligands. Linear RGD densities that promoted osteogenic differentiation of committed cells (MC3T3-E1 preosteoblasts) did not induce differentiation of hBMSCs or D1 stem cells, although matrices presenting the cyclic form of this adhesion ligand enhanced osteoprogenitor differentiation in 3D culture. This may be due to enhanced integrin-ligand binding. These studies indicate that biomaterial design parameters optimized for differentiated cell types may not directly translate to stem cell populations, because less-committed cells may require more instruction than differentiated cells. It is likely that design of synthetic extracellular matrices tailored to promote stem cell differentiation may enhance bone regeneration by transplanted cells.
منابع مشابه
Effect of RGD nanospacing on differentiation of stem cells.
Nanopatterns of a cell-adhesive peptide arginine-glycine-aspartate (RGD) on a persistently non-fouling poly(ethylene glycol) hydrogel were prepared, and behaviours of mesenchymal stem cells (MSCs) on patterns of five RGD nanospacings from 37 to 124 nm were examined under a full level of serum for eight days. Besides cell adhesion, osteogenic and adipogenic inductions of MSCs from rat bone marro...
متن کاملRGD-conjugated rod-like viral nanoparticles on 2D scaffold improve bone differentiation of mesenchymal stem cells
Viral nanoparticles have uniform and well-defined nano-structures and can be produced in large quantities. Several plant viral nanoparticles have been tested in biomedical applications due to the lack of mammalian cell infectivity. We are particularly interested in using Tobacco mosaic virus (TMV), which has been demonstrated to enhance bone tissue regeneration, as a tunable nanoscale building ...
متن کاملEnhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
Solid freeform fabrication (SFF) is recognized as a promising tool for creating tissue engineering scaffolds due to advantages such as superior interconnectivity and highly porous structure. Despite structural support for SFF-based three-dimensional (3-D) scaffolds that can lead to tissue regeneration, lack of cell recognition motifs and/or biochemical factors has been considered a limitation. ...
متن کاملData in support of effects of cell–cell contact and oxygen tension on chondrogenic differentiation of stem cells
While cell condensation has been thought to enhance chondrogenesis, no direct evidence so far confirms that cell-cell contact itself increases chondrogenic differentiation of stem cells, since the change of cell-cell contact is usually coupled with those of other cell geometry cues and soluble factors in cell culture. The present study semi-quantitatively examined the effect of cell-cell contac...
متن کاملScreening of Osteogenic-Enhancing Short Peptides from BMPs for Biomimetic Material Applications
Bone regeneration is an important issue in many situations, such as bone fracture and surgery. Umbilical cord mesenchymal stem cells (UC-MSCs) are promising cell sources for bone regeneration. Bone morphogenetic proteins and their bioactive peptides are biomolecules known to enhance the osteogenic differentiation of MSCs. However, fibrosis can arise during the development of implantable biomate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part A
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2009